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Estimating elastic constants by averaging over simulated structures™
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Abstract

In the context of atomistic simulations of solids, two situations often occur: that in which disordered structures (e.g. from “amorphous cell”
simulations) are deemed to occur with essentially equal likelihood to form a “glass”, and that in which a particular orientational average over one
crystal unit cell is desired, e.g. when a fiber modulus is deduced surmising that identical crystallites are oriented in the direction of the fiber axis with
a specified direction of the unit cell frame while all orientations in the transverse directions are equally likely (“fiber symmetry”’). The common
averaging of elastic constants yields inappropriate results. We apply methods introduced by Hill and by Walpole more than three decades ago and
show that with these methods, physically reasonable, self-consistent averages for elastic constants can be obtained as well as bounds considerably
narrower than the well-known ones after Voigt and Reuss. © 2001 Published by Elsevier Science Ltd.

Keywords: Elastic constants; Atomistic simulations; Disordered structures

1. The problem

The overall mechanical properties of materials com-
prising different domains cannot be estimated, in general,
without detailed knowledge of the morphology of the
material. For composites, this is usually done by either
assuming some simplifying distribution of features (e.g. a
random distribution of spheres in a matrix) and applying a
theoretical solution, or numerically, starting from a con-
figuration known in detail. Atomistic simulations are similar
to calculations on composites: observed on a macroscopic
level, most materials are homogeneous, but if observation
focuses on ever smaller length scales, they become hetero-
geneous at some point. Even amorphous polymers are
heterogeneous, if only on a scale of a few nanometers.
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! For properties that are determined by very local structural features, such
as the cohesive energy or conformational features, a simple (or weighted)
average over the different values obtained from different cells is certainly
appropriate. For properties that involve interactions over large distances,
where the macroscopic characteristic is determined by the interplay of
many different volume elements, the answer is not that simple. The
prime example of such properties are the elastic constants.
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This heterogeneity manifests itself in simulation when
different realizations of e.g. an “amorphous cell” are
employed to simulate properties: the simulated values differ
from cell to cell, sometimes substantially, and a single cell
usually is not perfectly isotropic in its characteristics. The
question then is: what shall one do with sets of values
obtained by simulation?'

We represent the isothermal elastic constants, statistical-
mechanically defined as the elements of the fourth-rank
tensor of second derivatives of Helmholtz energy A (per
unit volume) with the tensor components of strain ¢ (or,
employing the statistical-mechanical definition of strain,
by the strain dependence of the material stress tensor
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where e is the ‘“strain matrix,” s the “stress matrix,” and C
the “stiffness matrix”. The inverse § = C~' is the “compli-
ance matrix” and s = Ce, e = Ss. The strain tensor &jj is
symmetric by construction and the reduction to e does not
involve a loss of information; the stress tensor o; is only
symmetric in mechanical equilibrium and the contracted
matrix representation s only fully represents the stress
tensor if mechanical equilibrium is established — this
can happen in a static situation (e.g. for an energy-mini-
mized single structure), or when the investigated material
executes symmetric fluctuations around a mechanically
equilibrated average configuration (e.g. when sufficiently
many structures are considered that represent fluctuations).
Due to the symmetry of &; and oy (in the mechanically
equilibrated case), the tensor of elastic constants Cjyy, is
pair-wise symmetric in i, k and [, m and there are at most
21 independent tensor elements — typically these are
identified with the 21 independent elements of the stiffness
(or compliance) matrix. The elastic deformation energy is
1/2e"s = 1/2sTe = 1/2e"Ce = 1/2s"Ss (where the super-
script “T” denotes the transpose, i.e. 1 X 6 matrices), and,
since this energy must be positive, the stiffness matrix as
well as the compliance matrix are positive definite.

The elements of C and S are addressed with their matrix
subscripts, e.g. C,5 (which is the same as the tensor compo-
nent C,3), and matrices from different simulations are
distinguished with a single subscript, e.g. C;. The traditional
moduli, i.e. the elastic moduli E;, the shear moduli G;, and
Poisson’s ratios v;; are defined as (the summation equation
does not apply!)

E 1 G 1 Sij
Sii Skk TS 3)

(i)’ €(1,2,3)> k=i+3

For the estimation of the composite elastic constants of a
material composed of domains with different elastic proper-
ties, we follow Hill [4,5], Walpole [6,7], and Arridge [8]
who treat elastic deformations of materials consisting of
agglomerates of homogeneous solid domains firmly bonded
together, i.e. “composites”’, in unbounded phases. Each
domain has its own set of elastic constants and the volume
of interest is “representative”, i.e. sufficiently large that the
heterogeneities of structure are averaged and the volume
appears “macroscopically uniform”. The approach chosen
is one typical for “homogenization theories” [9,10]. The
question to be answered is: “given an assembly of n Cs,
{C.}, what is the appropriate average to represent the elastic

constant matrix (C)?”” Formally, we want to apply an overall
strain, the “system strain” esys and ask for that stiffness
matrix which produces the observed overall stress, the
“system stress’ Ssys,

Ssys = <C>eSYS or, alternatively, €gys = <S>SSYS (4)
Note that the existence of such average matrices is not assured;
for a system with a single ellipsoidal inclusion in an infinite
continuum, Eshelby has found such a solution [11,12], and it
has also been shown that they exist for multiple such inclu-
sions in a periodic continuum [13], but for the general case this
is not necessarily true. We limit ourselves to cases where only
the frequency of occurrence (i.e. the volume fraction in the
composite) of a particular structure is of relevance — neither
shape nor size of a component shall be taken into account —
and there are solutions to Eq. (4) in those situations.

In the context of atomistic simulations of solids, two
situations are most common: (i) that in which a particular
orientational average over one crystal unit cell is desired,
e.g. when a fiber modulus is deduced surmising that iden-
tical crystallites are oriented in the direction of the fiber axis
with a specified direction, fixed in the unit cell frame, while
all orientations in the transverse direction are equally likely
(“fiber symmetry”), or where a few crystal unit cells
coexist, each subject to the same overall orientational
disorder; and (ii) that in which disordered structures are
deemed to occur with essentially equal likelihood, i.e.
form a “glass”. In these situations, the different domains
are of unspecified shape but are firmly bonded together.
Each structure to be counted in the averaging process is
of equal weight and simple arithmetic means are calcu-
lated, i.e. (@) = > ¢;a;, where ¢; is the volume fraction
of structure i (3" ¢p; = 1); in the common case (in simu-
lations) that the volumes of all structures are identical,
(@)= (1/n)> a;. It would be straightforward to modify
the following schemes to include an averaging with
specific weighting, e.g. with a Boltzmann weight so
that {a) = > g;p,a; with g; = exp(—V,/kT), where V; is
the potential energy of the structure.

2. Voigt and Reuss bounds

The first treatments of the problem at hand by Voigt [14]
and by Reuss [15] led to simple bounds that can readily be
shown [8] to constitute strict upper and lower bounds,
respectively (of course, the constituent materials must be
elastic, i.e. have matrices of elastic constants that are
symmetric and positive definite). Assuming that every
domain in the composite is subjected to the same strain
leads to the mean stiffness matrix as a simple average of
the individual stiffness matrices, the Voigt bound:

<C>Voigt = Z e
%)

1
or, if all volumes are equal, (C)y,ip = — Z C.
n5
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This is the extreme upper bound. The assumption that every
domain in the composite feels the same stress gives the
mean compliance matrix as a simple average of the indivi-
dual compliances, the Reuss bound:

<S>Reuss = Z d)isi
(6)

1
or, if all volumes are equal, (S)peyss = — Z S;.
e

(ChReuss = (S)reuss 18 the extreme lower bound.

While Eqgs. (5) and (6) are simple, they are also unneces-
sarily harsh. As pointed out by Hill [16] and Arridge [8], the
forces between the domains in the Voigt average cannot be
in equilibrium, whereas in the Reuss average the distorted
domains cannot fit together. There are, fortunately, better
possibilities. For special cases with known domain shapes
and for some of the elastic moduli, for instance, the often
used Hashin—Shtrikman bounds [17] apply. Less well-
specified cases require different solutions. We discuss one
possible avenue below.

3. Hill-Walpole averages

When the composite is deformed, each homogeneous
solid domain can be considered, approximately, to be
imbedded in a homogeneous material of the average proper-
ties of the mixture, the so-called “comparison material”. For
a single spherical inclusion in an infinite, homogeneous,
strained elastic body, Eshelby [11] has found expressions
relating the deformation of the inclusion with that of the
overall system with the help of an “overall constraint”
tensor (comprising elastic constants of the infinite matrix
only) that describes the loading over the interface of the
inclusion. Hill [4,5] and Walpole [6,7] applied this overall
constraint tensor of an isotropic continuum with a spherical
cavity to composites.

The Hill-Walpole approach requires the definition of a
comparison material with constraint tensor corresponding to
a stiffness matrix C* or its inverse S*. The constraint
tensor’s form depends on the symmetry of the overall mate-
rial and is written below for isotropic and cylindrically
symmetric (fiber symmetry) domains. In either case, the
mean stiffness matrix is obtained by

(Chw + €71 =D (C; + € ™

Note that for C* = 0, this gives the Reuss average. If all
volumes are equal, this is conveniently written as

-1
1 " - .
<C>Hw=(; D.(C+Cy 1) -C". ®)

For the compliance matrix, one obtains analogously

(Shaw +8)7" =D (S +8)! ©)

Here, for S* =0, the Voigt average is obtained. If all
volumes are equal, one can write

L

-1
1 " - *
<S>Hw=(; DS +S) 1) -S". (10)

Which of Eq. (7) or Eq. (10) is applied, depends on whether
C” or S” is more convenient to use (they might be singular
and, hence, not simply invertible). In any case, {C)yw =
(S

It is worthwhile to point out that the derivation of Egs. (7)
and (9) is based on the fact that the stiffness and compliance
tensors of homogeneous elastic materials are symmetric and
positive definite. The equations might not be applicable to
situations where even one, or a few, of the C; (or S;) are not
symmetric or not positive definite. While there are simple
(and justifiable) ways around the lack of symmetry in a
matrix one might obtain from a particular simulation
method (e.g. from molecular dynamics), such as replacing
all off-diagonal elements by the mean of their symmetric
siblings, it is less obvious what should be done with a matrix
that is not positive definite, short of discarding it. We will
address this question in Section 4 by considering some
examples.

A self-consistent approach requires that the comparison
material has the same properties as the average material, i.e.
that the elastic constants, which define C* are the same as
those found from (C)yw, and analogously for the
compliances. In simulations, the stiffness and compliance
matrices often contain values with rather large error and it
might not be possible to satisfy these demands in detail.
Some elastic invariants, determined by the symmetry of
the comparison material, can be substituted for the full
matrices, however, and Eqgs. (7) and (9) can be solved itera-
tively to yield composite averages with elastic invariants in
agreement with those of the reference materials. This
approach yields “best” values for the elastic invariants.
Below, we will term these values “Hill-Walpole averages”.

3.1. Comparison material for an isotropic glass

An isotropic elastic material has a stiffness matrix with
only two independent elastic constants. It is often written in
the form

A2 A A0 0 07
A A+24 A 0 0 O
A A A+2u0 0 0 0
C= (11)
0 0 0 w 0 0
0 0 0 0 p O
L 0 0 0 0 0 pd

where A and p are the Lamé constants. The traditional
moduli B (bulk or compression modulus), G (shear modu-
lus), E (Young’s modulus), and v (Poisson’s ratio),
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expressed in Lamé constants, are

2
B=A+§M G=pu E=2ul + v
12
A (12)
]jzi
20+ @)

The Lamé constants of a stiffness matrix from simulation
can be obtained via a least-square procedure:

4a — 2b + 3¢ 2a +c— 15u
I‘LZ* )\:7

33 6 13

with

a:C” +C22+C33
b:C12+C13 +C21 +C23 +C31 +C32
c=Cy + Css t Ces

The overall constraint tensor of the isotropic comparison
material [5] can be written in terms of the Lamé constants
(of the comparison material):

o

ci,=—
U230 + 8u)

(@A + 12,8,
+ (OA + 14u)(8 6 + 6;0%)) (14)

which is conveniently represented in Voigt notation as

F20A + 40 2A 4 120 2A0 + 124

20+ 12u 200 +40p 21+ 12u

. " A+ 12u 20+ 12 201 + 404
T 2GA+ 8w 0 0 0
0 0 0
| 0 0 0

and can be employed in Eqgs. (7) and (8).

3.2. Comparison material for an aligned phase with fiber
symmetry

An elastic material with fiber symmetry, i.e. one in
which a C,, axis acts as fiber axis, has a stiffness matrix
with five independent elastic constants [18]. For a
system where the fiber axis is identified with the 3-axis, it

can be written in the form [19]2

K+M K—-M L 0 0 07
K-M K+M L 0 0 O
L L N 0 0 O

C= (16)
0 0 0O P 0 O
0 0 0 0 P O
. 0 0 0 0 0 Ml

where K, L, M, N, and P are the fiber moduli [7], which are
of course invariant to rotation around the 3-axis. The tradi-
tional extensional modulus (Young’s modulus, E3), the
torsional modulus (G; = G,), the extensional Poisson’s
ratio (v;3 = 1»3), and the transverse Poisson’s ratio (v, =
1,1), expressed in fiber moduli, are

Ey=N-L/K G =G,=P  vj3=uvy=LRK
NK —M)—L?
Y2 =S e M) = 12 a7

The fiber moduli of a stiffness matrix from simulation for
any crystal class can be obtained, e.g. via:

_CutCpt G+ Gy

K

4
= St Cnt G+ Gy

4

(18)
M= C11_C12_C;21+C22+C66 N=Cys
p= Cys + Css
2
0 0 0 7
0 0 0
0 0 0
(15)
oA+ 14n 0 0

0  9A+l4p 0
0 0 9A+ 14p

The overall constraint tensor of an aligned comparison
material with fiber symmetry has been derived by Walpole®

% Walpole [7] represents tensors in symbolic form. The stiffness tensor
for materials with fiber symmetry is C = (2K, L,N,2M,2P) in this nota-
tion, which gives the fourth-rank tensor components as [19] Cy;;; = K +
M, Cypp =K =M, Ciy33 = L, G333 = N, Cpzp3 = C3131 = P, and Clzlg =
M. The compliance constraint tensor S* in symbolic notation is [7] S* =
(1/2M,0,0,(1/2M) + (1/2K), 1/2P), and hence, S7,;; = (1/2M) + (1/4K),
Stin = —(1/4K), S35 = 0, 83333 = 0, Sp3p3 = S3131 = 1/4P, and Sip;, =
(1/4M) + (1/4K), which is Eq. (19).
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[19] for the compliances. This tensor is singular and the
stiffness constraints cannot readily be obtained. We give
here the overall compliance constraint matrix in the
contracted notation (in terms of the comparison material’s
three relevant fiber moduli, K, M, and P):

[ 2 1 1 ]
— 4+ — J—
v Tz X 0 0 0 0
1 2 1
- Z4+-2 0 0 0 0
K M K
0 0 0 0 O 0
4 0 0 0 = 0 0
P
1
0 0 0o 0 = 0
P
1 1
i 0 0 0 0 0 Taa

19)

Application in Eq. (9) or (10) yields the desired results.

4. Hill-Walpole bounds

Egs. (7) and (9) can be used to obtain bounds by obser-
ving that the comparison material for any of the domains
cannot possibly have elastic invariants lying outside the
range of the invariants of all domains in the composite
(we use the term “elastic invariant” for measures of the
tensor of elastic constants that are invariant to symmetry
transformations consistent with the system symmetry —
e.g. for the isotropic case, the two Lamé constants are
invariant to rotation about any axis; in the case with fiber
symmetry, the five fiber moduli are invariant to rotation
about the fiber axis). The approach here is (i) to compute
the elastic constants of all C;, (ii) to select the upper and
lower limits of the ranges spanned by the invariants, (iii) to
calculate a different C* for every combination of extreme
invariants, and then (iv) to use Eq. (7) or Eq. (9) to compute
a set of (C)yw for every combination of extreme invariants;
these averages span all possible values and their extremes
provide new bounds, which we will term “Hill-Walpole
bounds”.

The situation most common in the simulation of mechan-
ical properties of materials is that where for a homogeneous
isotropic material, stiffness matrices are computed that show
differences in the values of their elements. We chart a
simple course for determining the Hill-Walpole bounds
for these materials: two moduli, arbitrarily selected to be
B and G, are calculated for every matrix C; using Eqgs. (12)
and (13), and the extremes in these two moduli are then
taken to define four comparison materials through C”,
Eq. (15): that with minimal B and minimal G, that with
minimal B and maximal G, etc. Application of Eq. (7)
with these four C* then yields four different (C)yy and

from these in turn we obtain values for the traditional
moduli. The extreme values of these are considered to be
the Hill-Walpole bounds. The choice of moduli for this
procedure is arbitrary and one could equally well choose
E and v instead of B and G, or another combination of
two of the moduli; since the extremes in the combination
of any two of the moduli correspond also to extremes in the
others, the result will be identical. This fortunate circum-
stance might not hold for other symmetry classes where
many moduli are required for the full specification of the
matrix of elastic constants.

For the materials with fiber symmetry, stiffness matrices
rotated about the fiber axis all have the same invariant fiber
moduli K, L, M, N, and P — there is no basis to estimate
bounds since there are no variations between the matrices.
The elastic constants nevertheless require appropriate
averaging.

5. Examples
5.1. Amorphous glassy polymers — aP$S

As an illustration, atactic polystyrene at 300 K was taken
(the values assumed [20] are representative for PS: E =
3.4 GPa, G = 1.2 GPa, B = 5.0 GPa, v = 0.38). The corre-
sponding stiffness matrix is

6.6 42 42 0

42 66 42 0

42 42 66 O

Cps = GPa (20)

o o o O
o o o o ©

. 0 0 0 0 o0 12

We want to test the procedures suggested in Section 3
concerning the stability of the self-consistent estimates of
mean values and those from Section 4 with respect to
narrowness of bounds obtained. Furthermore, we want to
check these procedures regarding their sensitivity with
respect to the two common deficiencies in simulated data:
sometimes the matrices are asymmetric, sometimes not
positive definite. To this end, test sets are required; they
were derived from the stiffness matrix in Eq. (20). The
volumes of all structures were identical and Eq. (8) was
applied.

Sets of eleven stiffness matrices each (the test “data”)
were obtained from the above matrix in two ways: first,
“random noise” from a uniform distribution with variable
maximum amplitude was added to the individual elements
of the stiffness matrix C, in some cases preserving the
symmetry of the matrix. Not all of these matrices were
positive definite, as it might occur in stiffness matrices
obtained from simulations. The second method used to
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Table 1

Bounds and self-consistent means for sets of eleven structures derived from Cpg for atactic polystyrene

Model system G (GPa) B (GPa) E (GPa) v
“Parent” material 1.2 5.0 3.4 0.38
Random noise,* A = 1 GPa Reuss/Voigt bounds 0.86/1.28 4.73/4.99 2.44/3.54 0.38/0.41
(non-symmetric Cs, one is
non-positive definite)
Hill-Walpole average 1.12 4.88 3.13 0.39
Hill-Walpole bounds 1.12/1.16 4.87/4.90 3.11/3.21 0.39/0.39
Random noise,” A = 1 GPa Reuss/Voigt bounds 0.86/1.28 4.73/4.99 2.44/3.54 0.38/0.41
(symmetric Cs, five are
non-positive definite)
Hill-Walpole average 1.12 4.88 3.13 0.39
Hill-Walpole bounds 1.12/1.16 4.87/4.90 3.11/3.21 0.39/0.39
Random noise,* Reuss/Voigt bounds 0.76/1.33 5.01/5.09 2.17/3.66 0.38/0.43
A =25GPa
(non-symmetric Cs, seven
are non-positive definite)
Hill-Walpole average Did not converge
Hill-Walpole bounds 1.10/2.82 2.65/5.14 3.08/7.16 0.26/0.40
Evenly spaced B and G.° Reuss/Voigt bounds 1.07/1.20 4.45/5.00 2.97/3.33 0.39/0.39
spanning B = 0.6—-1.8 GPa
and G=2.5-7.5 GPa
Hill-Walpole average 1.14 4.60 3.17 0.39
Hill-Walpole bounds 1.12/1.16 4.54/4.65 3.11/3.21 0.39/0.39

 The stiffness matrix of aPS and 10 matrices derived from it by adding “random noise” from a uniform distribution with maximum amplitude A to the
individual elements. Negative matrix elements were replaced by their absolute values.

> Asin previous footnote, but the matrices have been made symmetric (C,-j =

o

¢ The matrices were computed from Egs. (11) and (12), B and G assuming the values (2.5, 0.60), (3.0, 0.72), (3.5, 0.84), (4.0, 0.96), (4.5, 1.08), (5.0, 1.20),

(5.5, 1.32), (6.0, 1.44), (6.5, 1.56), (7.0, 1.68), (7.5, 1.80), respectively.

obtain test sets consisted of computing matrices by Egs. (11)
and (12); values for B and G were selected uniformly spaced
between 50 and 150% of the values given by Eq. (20) and
stiffness matrices calculated from them (here, it does not
matter whether the two invariants are changed in a parallel
or an anti-parallel fashion). The second method provides
test sets that are by construction symmetric and positive
definite.

The variance of relevant parameters in these test sets is
considerable. In the case where random noise was arbitrarily
added to the elements of C, the values of, for instance, B
varied between ca. 4.5 and 5.4 GPa when the maximum
amplitude of the noise, A, was 1 GPa, and between 4.2
and 5.8 GPa when it was 2.5 GPa. In the case of the system-
atically changed sets, the values fell between 2.5 and
7.5 GPa.

Application of the procedures outlined above proceeded
now as follows: the Voigt bound and the Reuss bound in the
contracted representations were calculated by simply aver-
aging all matrix elements over all matrices according to Eqs.
(5) and (6), and the Lamé constants and the traditional
moduli were obtained by Eqgs. (12) and (13). For the Hill—-
Walpole bounds, B and G were calculated for every matrix,
and the extremes in these two moduli were then taken to

define four comparison materials through C*, Eq. (15): that
with minimal B and minimal G, that with minimal B and
maximal G, etc. Application of Eq. (8) with these four C*
then yielded four different (C)yw and from these in turn we
obtained values for the traditional moduli. The extreme
values of these are listed in Table 1 as Hill-Walpole
bounds. The Hill-Walpole averages, i.e. the self-consistent
mean values of the elastic constants, were determined by
starting with one particular comparison material, computing
(C)uw via Eq. (8), extracting the traditional moduli, using
those to define a new comparison material, and repeating
this process until convergence had been reached. Here we
considered the process as having converged when none of
the elements of (C)yw between two iterations changed by
more than 0.1% of the maximum matrix element. It was
found that when the method converged, it did so in no
more than two iterations; also, runs started with different
comparison materials yielded the same result. In one case,
where more than two-thirds of all matrices in the data set
were not positive definite, the method did not converge at all
— it is our contention that no solution exists for this very
inappropriate data set.

Inspecting the values in Table 1, the following is evident:
(i) modest asymmetry in the data matrices does not seem to
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Table 2
Hill-Walpole averages for elastic constants from rotational averaging of
Cppra to fiber symmetry

Quantity Reuss and Hill-Walpole
Voigt bounds average
Extensional modulus, E3 273/335 309
Transverse modulus, E| = E, 16.7/20.3 19.7
Torsional moduli, G, = G, 6.7/13.7 12.0
Extensional Poisson’s ratio, v3 = v»;  0.46/0.53 0.51
Transverse Poisson’s ratio, v, = vy, 0.62/0.66 0.62

have a perceptible effect on the results; (ii) once the data is
sufficiently “corrupted”, as in the case of the randomly
perturbed data with noise amplitudes up to 2.5 GPa
(the peak-to-peak noise was 75% of the largest element
of the “parent” matrix), a self-consistent Hill-Walpole
mean cannot be found. An indication of the insuffi-
ciency of the data is the fact that the Hill-Walpole
bounds span a larger range than the Voigt/Reuss bounds
(remember that the Voigt/Reuss bounds are strict upper
and lower bounds only for sets of symmetric and posi-
tive definite matrices of elastic constants); (iii) for data
of reasonable quality, the Hill-Walpole approach provides
an efficient path to a physically reasonable average of all
elastic constants and to bounds considerably narrower than
those available before.

5.2. Polymer fiber — PPTA

A crystalline polymer from the literature was selected
as test case: a simulated crystal cell [21] of poly(p-
phenylene terephthalate), PPTA, similar in atomistic
structure to this polymer’s modification I. The stiffness
matrix is [21]

40 23 13 0.1 12 247
23 31 41 15 32 19
13 41 360 03 5.0 11

Cppra = GPa (21)

0.1 15 03 55 37 27

1.2 32 50 37 22 32

| 24 19 11 27 32 1.2

The fibers of PPTA are assumed to consist only of
crystallites, which are all oriented with their 3-axis
parallel to the fiber axis, their transversal orientation
being random. For the processes of rotationally aver-
aging this crystal structure to fiber symmetry, a number
of derivative stiffness matrices are required that are
uniformly distributed in orientation around the 3-axis.
For the Voigt and Reuss bounds, this can readily be
done analytically [21], but not for the Hill-Walpole
method. We select four structures, each rotated by 90°

around the 3-axis with respect to the preceding one,’ in
the averaging procedures.

Application of the approach outlined above proceeded
now as follows: the Voigt bound and the Reuss bound in
the contracted representation were calculated by simply
averaging the matrix elements of the four matrices accord-
ing to Egs. (5) and (6) and the traditional moduli were
obtained by Egs. (17) and (18). The results are listed in
Table 2.

The Hill-Walpole averages, i.e. the self-consistent mean
values of the elastic constants, were determined by starting
with one particular comparison material, computing (S)pw
via Eq. (10), extracting the traditional moduli, using those to
define a new comparison material, and repeating this
process until convergence had been reached. Here we
considered the process as having converged when none of
the elements of (S)yw between two iterations changed by
more than 0.1% of the maximum matrix element. The
method converged in two iterations. The self-consistent
average stiffness matrix is

35 23 29 0 O
23 35 29 0 O
29 29 338 0 O 0
0 0 0 12 0
0 0 0 0 12 O
[ 02 -02 O O O 7.1

GPa (22)

The results for the moduli are reported in Table 2. These
values clearly show that the Hill-Walpole approach
provides an efficient path to a physically reasonable average
of the elastic constants.

6. Conclusions

Two situations are very common in atomistic modeling:
that in which a disordered material is represented by a
number of independent structures, each with its own stiff-
ness and compliance matrix, and where the mean stiffness
and compliance of the macroscopic material, hypothetically

3 Rotated by 90° around the 3-axis, the stiffness matrix expressed in the
original tensor element is:

Cmt by 90° around 3-axis

Co Cuzm Con Cois —Capz —Conn |
Ciz Cin Cun Cuiz —Cuxn —Chnp
Coyz Cunn GCun Gz —Gon —Cap
Coiz Cuz Gz Cisiz —Cuiz —Ciapp

—Cro —Ciz —GCiz —Ciz Coss Coin
__C2212 —Cina —Cuin —Cun Cun C|212_




582 U.W. Suter, B.E. Eichinger / Polymer 43 (2002) 575-582

consisting of many such structures, are requested, and that
in which a particular orientational average of the stiffness or
compliance matrix of one crystal unit cell is desired, e.g.
when a fiber modulus is deduced assuming fiber symmetry.
The common procedure of simply averaging -elastic
matrices in these situations is clearly inappropriate [8,16].
Instead, the methods introduced by Hill [4,5] and by
Walpole [6,7] more than three decades ago for the evalua-
tion of the overall elastic behavior of composites have here
been applied, with success.

The contracted notation was found to be convenient for
this problem and application of the Hill and Walpole meth-
ods to two simple model data sets shows that with these
techniques, physically reasonable, self-consistent averages
for elastic constants can be readily computed and that
bounds considerably narrower than the well-known ones
after Voigt and Reuss can be obtained. Short programs to
effect the calculations described here can be obtained from
the authors.
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